Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ital J Pediatr ; 49(1): 95, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533075

RESUMO

BACKGROUND: Chronic Granulomatous Disease (CGD) is a primary immunodeficiency that causes susceptibility to recurrent fungal and bacterial infections. The CYBB gene encodes gp91phox component of the Phagocytic Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and specifically, X-linked CGD is caused by mutations in the CYBB gene, located on the X chromosome. The aim of the study was to characterize functional and genetic mutations in X-linked CGD. METHODS: Functional analysis was conducted on the whole blood of seventeen male individuals who were suspected to have X-linked chronic granulomatous disease (CGD). Flow cytometry was employed to assess the capacity of NADPH oxidase, measuring both H2O2 production and gp91phox protein expression in neutrophils. Additionally, DNA Sanger sequencing was performed for genetic analysis. The pathogenicity of novel mutations was assessed by pathogenicity prediction tools. RESULT: Among the seventeen patients evaluated, five patients (P1, P2, P3, P4, and P5) displayed impaired H2O2 production by their neutrophils upon stimulation with Phorbol myristate acetate (PMA), accompanied by abnormal gp91phox expression. DNA sequencing of the CYBB gene identified specific mutations in each patient. In P1 and P2 (previously reported cases), a hemizygous missense mutation, c.925G > A/p.E309K was identified. In P3 and P4 (novel cases), hemizygous nonsense mutations, c.216T > A/p.C72X were found. Lastly, in P5 (also a novel case), a hemizygous missense mutation, c.732T > G/p.C244W was detected. These mutations reside in exons 9,3 and 7 of the CYBB gene, respectively. CONCLUSIONS: The current study contributes to the understanding of the clinical and genetic spectrum associated with X-linked chronic granulomatous disease (CGD). It highlights the significance of early diagnosis in CGD and emphasizes the importance of lifelong prophylaxis to prevent severe infections.


Assuntos
Doença Granulomatosa Crônica , Humanos , Masculino , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/complicações , Peróxido de Hidrogênio , Paquistão , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Mutação , NADPH Oxidase 2/genética
2.
Microb Pathog ; 158: 104850, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33766632

RESUMO

The ecosystem approach has been developed since the 1940s. An ecosystem is a community of living organism and their interaction and conjugation with abiotic factors of the environment. The ecosystem is not endemic to the aquatic environment only but, the terrestrial environment is also considered to be a part of an ecosystem. Soil act as mother role for the survival of different microorganism. The Toxoplasma gondii oocysts stay survive for a long time in the soil. This presence of these oocysts might critically enhance the success of this parasite in two ways. First, this parasite can widespread; second, it can create a lot of consequences regarding animals and their economic value. Soil contamination caused by Toxoplasma gondii Y is a significant and profound issue for animals and public health. Therefore, the current study was aimed to summarize and correlate the soil and parasite, their transmission, infection, and some aspects related to T. gondii. The small animals are pose at a high risk therefore, it was concluded that some preventive measures should be taken to keep secure itself from zoonotic diseases.


Assuntos
Toxoplasma , Toxoplasmose Animal , Animais , Ecossistema , Humanos , Ruminantes , Solo , Toxoplasmose Animal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...